Note
Go to the end to download the full example code.
Glass Symmetry from Vectors#
This example shows how to identify symmetry (in a glassy system but this could be useful other places) by looking at the angles between 3 vectors in the diffraction pattern at some radial ring in k to identify groups of 3 vectors that are subtended by the same angle.
This is a very simple example with more detailed examples to come.
import pyxem as pxm
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
import numpy as np
First we load the data and do some basic processing
s = pxm.data.pdnip_glass(allow_download=True)
s.axes_manager.signal_axes[0].offset = -23.7
s.axes_manager.signal_axes[1].offset = -19.3
s.filter(gaussian_filter, sigma=(1, 1, 0, 0), inplace=True) # only in real space
s.template_match_disk(disk_r=5, subtract_min=False, inplace=True)
vectors = s.get_diffraction_vectors(threshold_abs=0.5, min_distance=3)
0%| | 0/17 [00:00<?, ?it/s]
6%|▌ | 1/17 [00:05<01:30, 5.63s/it]
29%|██▉ | 5/17 [00:11<00:24, 2.02s/it]
47%|████▋ | 8/17 [00:11<00:09, 1.08s/it]
59%|█████▉ | 10/17 [00:16<00:11, 1.60s/it]
76%|███████▋ | 13/17 [00:22<00:06, 1.68s/it]
100%|██████████| 17/17 [00:22<00:00, 1.31s/it]
0%| | 0/33 [00:00<?, ?it/s]
3%|▎ | 1/33 [00:04<02:09, 4.03s/it]
21%|██ | 7/33 [00:04<00:11, 2.27it/s]
30%|███ | 10/33 [00:07<00:17, 1.34it/s]
39%|███▉ | 13/33 [00:07<00:09, 2.03it/s]
48%|████▊ | 16/33 [00:08<00:05, 2.94it/s]
58%|█████▊ | 19/33 [00:11<00:08, 1.59it/s]
70%|██████▉ | 23/33 [00:11<00:04, 2.46it/s]
76%|███████▌ | 25/33 [00:15<00:05, 1.40it/s]
94%|█████████▍| 31/33 [00:15<00:00, 2.62it/s]
100%|██████████| 33/33 [00:15<00:00, 2.09it/s]
0%| | 0/51 [00:00<?, ?it/s]
100%|██████████| 51/51 [00:00<00:00, 619.55it/s]
Now we can convert to polar vectors
pol = vectors.to_polar()
0%| | 0/51 [00:00<?, ?it/s]
24%|██▎ | 12/51 [00:00<00:00, 118.24it/s]
47%|████▋ | 24/51 [00:00<00:00, 108.24it/s]
80%|████████ | 41/51 [00:00<00:00, 129.63it/s]
100%|██████████| 51/51 [00:00<00:00, 135.52it/s]
This function gets the inscribed angle accept_threshold is the maximum difference between the two angles subtended by the 3 vectors
ins = pol.get_angles(min_angle=0.05, min_k=0.3, accept_threshold=0.1)
flat_vect = ins.flatten_diffraction_vectors()
fig, axs = plt.subplots()
axs.hist(flat_vect.ivec["delta phi"].data, bins=60, range=(0, 2 * np.pi / 3))
axs.set_xlabel("delta phi")
axs.set_xticks(
[0, np.pi / 5, np.pi / 4, 2 * np.pi / 5, np.pi / 2, np.pi / 3, 3 * np.pi / 5]
)
axs.set_xticklabels(
[
0,
r"$\frac{\pi}{5}$",
r"$\frac{\pi}{4}$",
r"$\frac{2\pi}{5}$",
r"$\frac{\pi}{2}$",
r"$\frac{\pi}{3}$",
r"$\frac{3\pi}{5}$",
]
)

0%| | 0/51 [00:00<?, ?it/s]
2%|▏ | 1/51 [00:00<00:38, 1.30it/s]
6%|▌ | 3/51 [00:01<00:14, 3.29it/s]
10%|▉ | 5/51 [00:01<00:10, 4.27it/s]
14%|█▎ | 7/51 [00:01<00:07, 5.90it/s]
18%|█▊ | 9/51 [00:02<00:10, 4.10it/s]
22%|██▏ | 11/51 [00:02<00:08, 4.50it/s]
25%|██▌ | 13/51 [00:04<00:15, 2.41it/s]
29%|██▉ | 15/51 [00:04<00:14, 2.49it/s]
33%|███▎ | 17/51 [00:05<00:10, 3.34it/s]
41%|████ | 21/51 [00:05<00:05, 5.26it/s]
45%|████▌ | 23/51 [00:07<00:10, 2.70it/s]
49%|████▉ | 25/51 [00:07<00:08, 3.12it/s]
53%|█████▎ | 27/51 [00:07<00:06, 3.65it/s]
57%|█████▋ | 29/51 [00:08<00:05, 4.39it/s]
61%|██████ | 31/51 [00:08<00:05, 3.71it/s]
65%|██████▍ | 33/51 [00:09<00:05, 3.33it/s]
69%|██████▊ | 35/51 [00:09<00:04, 3.99it/s]
73%|███████▎ | 37/51 [00:10<00:04, 3.47it/s]
76%|███████▋ | 39/51 [00:11<00:03, 3.19it/s]
84%|████████▍ | 43/51 [00:12<00:02, 2.83it/s]
88%|████████▊ | 45/51 [00:13<00:02, 2.83it/s]
96%|█████████▌| 49/51 [00:13<00:00, 4.60it/s]
100%|██████████| 51/51 [00:13<00:00, 3.70it/s]
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████| 2/2 [00:00<00:00, 3311.73it/s]
[Text(0.0, 0, '0'), Text(0.6283185307179586, 0, '$\\frac{\\pi}{5}$'), Text(0.7853981633974483, 0, '$\\frac{\\pi}{4}$'), Text(1.2566370614359172, 0, '$\\frac{2\\pi}{5}$'), Text(1.5707963267948966, 0, '$\\frac{\\pi}{2}$'), Text(1.0471975511965976, 0, '$\\frac{\\pi}{3}$'), Text(1.8849555921538759, 0, '$\\frac{3\\pi}{5}$')]
cycle through colors in groups of 3 for each symmetry cluster
points = ins.to_markers(
color=["b", "b", "b", "g", "g", "g", "y", "y", "y", "r", "r", "r"]
)
original_points = vectors.to_markers(color="w", alpha=0.5)
s.axes_manager.indices = (67, 55) # jumping to a part with some symmetric structure
s.plot(vmin=0.0)
s.add_marker(points)
s.add_marker(original_points)
0%| | 0/51 [00:00<?, ?it/s]
45%|████▌ | 23/51 [00:00<00:00, 189.81it/s]
84%|████████▍ | 43/51 [00:00<00:00, 193.37it/s]
100%|██████████| 51/51 [00:00<00:00, 217.08it/s]
0%| | 0/51 [00:00<?, ?it/s]
100%|██████████| 51/51 [00:00<00:00, 1106.83it/s]
0%| | 0/51 [00:00<?, ?it/s]
100%|██████████| 51/51 [00:00<00:00, 1064.07it/s]
Total running time of the script: (1 minutes 27.050 seconds)

